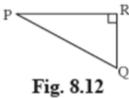
# **Trigonometry**

#### Practice set 8.1

Q. 1. In the Fig. 8.12,  $\angle R$  is the right angle of  $\triangle PQR$ . Write the following ratios.

## (i) sin P (ii) cos Q (iii) tan P (iv) tan Q



Answer: For any right-angled triangle,

 $sin\theta$  = Opposite side Side/Hypotenuse

 $cos\theta$  = Adjacent sideSide/Hypotenuse

 $tan\theta = sin\theta/cos\theta$ 

= Opposite side Side/Adjacent sideSide

 $\cot\theta = 1/\tan\theta$ 

= Adjacent sideSide/Opposite side Side

secθ = 1/cosθ

= Hypotenuse/Adjacent sideSide

 $cosec\theta = 1/sin\theta$ 

= Hypotenuse/Opposite side Side

In the given triangle let us understand, the Opposite side and Adjacent sidesides.

So for  $\angle P$ ,

Opposite side Side = QR





Adjacent sideSide = PR

So, for  $\angle Q$ ,

Opposite side Side = PR

Adjacent sideSide = QR

In general for the side Opposite side to the 90° angle is the hypotenuse.

So, for  $\triangle$  PQR, hypotenuse = PQ

(i) sin P = Opposite side Side/Hypotenuse

= QR/PQ

(ii) cos Q = Adjacent sideSide/Hypotenuse

= QR/PQ

(iii)  $\tan P = \sin\theta/\cos\theta$ 

= Opposite side Side/Adjacent sideSide

= QR/PR

(iv)  $\tan Q = \sin\theta/\cos\theta$ 

= Opposite side Side/Adjacent sideSide

= PR/QR

Q. 2. In the right angled  $\Delta XYZ$ ,  $\angle XYZ = 90^{\circ}$  and a,b,c are the lengths of the sides as shown in the figure. Write the following ratios,

(i) sin X (ii) tan Z

(iii) cos X (iv) tan X.

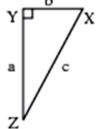


Fig. 8.13

**Answer:** For any right-angled triangle,

 $sin\theta$  = Opposite side Side/Hypotenuse

 $cos\theta$  = Adjacent Side/Hypotenuse

 $tan\theta = sin\theta/cos\theta$ 

### = Opposite Side/Adjacent Side

In the given triangle let us understand, the Opposite side and Adjacent side

So for  $\angle X$ ,

Opposite Side = YZ = a

Adjacent Side = XY = b

So for  $\angle Z$ ,

Opposite Side = XY = b

Adjacent Side = YZ = a

In general for the side Opposite side to the 90° angle is the hypotenuse.

So for  $\triangle$  XYZ, hypotenuse = XZ = c

- (i) sin X = Opposite side Side/Hypotenuse
- = YZ/XZ
- = a/c
- (ii)  $\tan Z = \sin\theta/\cos\theta$
- = Opposite Side/Adjacent Side
- = XY/YZ
- = b/a
- (iii) cos X= Adjacent Side/Hypotenuse
- = XY/XZ





= b/c

(iv)  $\tan X = \sin\theta/\cos\theta$ 

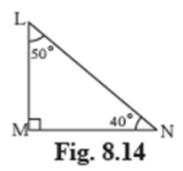
= Opposite Side/Adjacent Side

= YZ/XY

= a/b

Q. 3. In right angled  $\Delta$ LMN,  $\angle$ LMN =90°,  $\angle$ L = 50° and  $\angle$ N = 40° write the following ratios.

(i) sin 50° (ii) cos 50° (iii) tan 40° (iv) cos 40°



Answer: For any right-angled triangle,

 $sin\theta$  = Opposite side Side/Hypotenuse

 $cos\theta$  = Adjacent sideSide/Hypotenuse

 $tan\theta = sin\theta/cos\theta$ 

= Opposite side Side/Adjacent sideSide

 $\cot\theta = 1/\tan\theta$ 

= Adjacent sideSide/Opposite side Side

secθ = 1/cosθ

= Hypotenuse/Adjacent sideSide

 $cosec\theta = 1/sin\theta$ 



= Hypotenuse/Opposite side Side

In the given triangle let us understand, the Opposite side and Adjacent sidesides.

So for  $\angle$  50°,

Opposite side Side = MN

Adjacent sideSide = LM

So for  $\angle 40^{\circ}$ ,

Opposite side Side = LM

Adjacent sideSide = MN

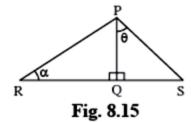
In general, for the side Opposite side to the 90° angle is the hypotenuse.

So, for  $\triangle$  LMN, hypotenuse = LN

- (i) sin 50° = Opposite side Side/Hypotenuse
- = MN/LN
- (ii) cos 50° = Adjacent sideSide/Hypotenuse
- = LM/LN
- (iii)  $\tan 40^\circ = \sin\theta/\cos\theta$
- = Opposite side Side/Adjacent sideSide
- = LM/MN
- (iv) cos 40° = Adjacent sideSide/Hypotenuse
- = MN/LN
- Q. 4 In the figure 8.15  $\angle$ PQR = 90°,  $\angle$ PQS = 90°,  $\angle$ PRQ =  $\alpha$  and  $\angle$ QPS =  $\theta$  Write the following trigonometric ratios.
- i.  $\sin \alpha$ ,  $\cos \alpha$ ,  $\tan \alpha$
- ii.  $\sin \theta$ ,  $\cos \theta$ ,  $\tan \theta$







Answer: For any right-angled triangle,

 $sin\theta$  = Opposite side Side/Hypotenuse

 $cos\theta$  = Adjacent sideSide/Hypotenuse

 $tan\theta = sin\theta/cos\theta$ 

= Opposite side Side/Adjacent sideSide

 $\cot\theta = 1/\tan\theta$ 

= Adjacent sideSide/Opposite side Side

secθ = 1/cosθ

= Hypotenuse/Adjacent sideSide

 $cosec\theta = 1/sin\theta$ 

= Hypotenuse/Opposite side Side

(i) In the given triangle let us understand, the Opposite side and Adjacent sidesides.

So, for  $\triangle$  PQR,

So, for  $\angle \alpha$ ,

Opposite side Side = PQ

Adjacent sideSide = QR

In general for the side Opposite side to the 90° angle is the hypotenuse.

So, for  $\triangle$  PQR, hypotenuse = PR

 $\sin \alpha = \text{Opposite side Side/Hypotenuse}$ 







= PQ/PR $\cos \alpha = Adjacent sideSide/Hypotenuse$ = QR/PR $\tan \alpha = \sin \theta / \cos \theta$ = Opposite side Side/Adjacent sideSide = PQ/QR(ii) In the given triangle let us understand, the Opposite side and Adjacent sidesides. So for  $\triangle$  PQS, So for  $\angle \theta$ , Opposite side Side = QS Adjacent sideSide = PQ In general for the side Opposite side to the 90° angle is the hypotenuse. So for  $\triangle$  PQS, hypotenuse = PS  $sin\theta$  = Opposite side Side/Hypotenuse = QS/PS

 $cos\theta$  = Adjacent sideSide/Hypotenuse

= Opposite side Side/Adjacent sideSide

= PQ/PS

= QS/PQ

 $tan\theta = sin\theta/cos\theta$ 

# Practice set 8.2

Q. 1. In the following table, a ratio is given in each column. Find the remaining two ratios in the column and complete the table.

| sin θ |          | 11<br>61 |   | $\frac{1}{2}$ |                      |                 |         | 3 5 |                       |
|-------|----------|----------|---|---------------|----------------------|-----------------|---------|-----|-----------------------|
| cos θ | 35<br>37 |          |   |               | $\frac{1}{\sqrt{3}}$ |                 |         |     |                       |
| tan θ |          |          | 1 |               |                      | $\frac{21}{20}$ | 8<br>15 |     | $\frac{1}{2\sqrt{2}}$ |

#### Answer:

| Sinθ | $\frac{12}{37}$ | $\frac{11}{61}$ | $\frac{1}{\sqrt{2}}$ | 1/2                  | $\frac{\sqrt{2}}{\sqrt{3}}$ | $\frac{21}{29}$ | $\frac{8}{17}$  | 3<br>5        | $\frac{1}{3}$         |
|------|-----------------|-----------------|----------------------|----------------------|-----------------------------|-----------------|-----------------|---------------|-----------------------|
| Cosθ | 35<br>37        | $\frac{60}{61}$ | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{3}}$        | $\frac{20}{29}$ | $\frac{15}{17}$ | 4<br>5        | $\frac{2\sqrt{2}}{3}$ |
| Tanθ | 12<br>35        | 11<br>60        | 1                    | $\frac{1}{\sqrt{3}}$ | $\frac{\sqrt{2}}{1}$        | $\frac{21}{20}$ | 8<br>15         | $\frac{3}{4}$ | $\frac{1}{2\sqrt{2}}$ |

## For first column:

| Sinθ | 12 |
|------|----|
|      | 37 |
| Cosθ | 35 |
|      | 37 |
| Tanθ | 12 |
|      | 35 |

 $\cos\theta = 35/37$ 

Adjacent side= 35,

Hypotenuse = 37

By Pythagoras Theorem

 $Hypotenuse^2 = Opposite side^2 + Adjacent^2$ 

Opposite side<sup>2</sup> = Hypotenuse<sup>2</sup> - Adjacent<sup>2</sup>

 $=37^2-35^2$ 



$$= 1369 - 1225$$

Opposite side $^2$  = 144

Opposite side = 12

## For second column:

| Sinθ | 11 |
|------|----|
|      | 61 |
| Cosθ | 60 |
|      | 61 |
| Tanθ | 11 |
|      | 60 |

Opposite side = 11

Hypotenuse = 61

By Pythagoras Theorem

Hypotenuse<sup>2</sup> = Opposite side<sup>2</sup> + Adjacent<sup>2</sup>

Adjacent<sup>2</sup> = Hypotenuse<sup>2</sup> - Opposite side<sup>2</sup>

$$=61^2 - 11^2$$

$$= 3721 - 121$$

 $Adjacent^2 = 3600$ 

Adjacent side= 60

## For third column:

| Sinθ | $\frac{1}{\sqrt{2}}$ |
|------|----------------------|
| Cosθ | $\frac{1}{\sqrt{2}}$ |
| Tanθ | 1                    |

Opposite side = 1



Adjacent side= 1

By Pythagoras Theorem

Hypotenuse<sup>2</sup> = Opposite side<sup>2</sup> + Adjacent<sup>2</sup>

= 1 + 1

Hypotenuse $^2 = 2$ 

Hypotenuse =  $\sqrt{2}$ 

## For fourth column:

| Sinθ | $\sqrt{2}$ |
|------|------------|
|      | $\sqrt{3}$ |
| Cosθ | 1          |
|      | $\sqrt{3}$ |
| Tanθ | $\sqrt{2}$ |
|      | 1          |

Opposite side = 1

Hypotenuse = 2

By Pythagoras Theorem

Hypotenuse<sup>2</sup> = Opposite side<sup>2</sup> + Adjacent<sup>2</sup>

 $Adjacent^2 = Hypotenuse^2 - Opposite side^2$ 

 $= 2^2 - 1^2$ 

= 4 - 1

 $Adjacent^2 = 3$ 

Adjacent side= √3

## For fifth column:



| Sinθ | $\frac{\sqrt{2}}{\sqrt{3}}$ |
|------|-----------------------------|
| Cosθ | $\frac{1}{\sqrt{3}}$        |
| Tanθ | $\frac{\sqrt{2}}{1}$        |
|      | 1                           |

Adjacent side= 1

Hypotenuse =  $\sqrt{3}$ 

By Pythagoras Theorem

Hypotenuse<sup>2</sup> = Opposite side<sup>2</sup> + Adjacent<sup>2</sup>

Opposite side<sup>2</sup> = Hypotenuse<sup>2</sup> - Adjacent<sup>2</sup>

$$=(\sqrt{3})^2-1^2$$

$$= 3 - 1$$

Opposite  $side^2 = 2$ 

Opposite side =  $\sqrt{2}$ 

# For sixth column:

| Sinθ | 21 |
|------|----|
|      | 29 |
| Cosθ | 20 |
|      | 29 |
| Tanθ | 21 |
|      | 20 |

Opposite side = 21

Adjacent side= 20

By Pythagoras Theorem

Hypotenuse<sup>2</sup> = Opposite side<sup>2</sup> + Adjacent<sup>2</sup>



$$= 21^2 + 20^2$$

Hypotenuse $^2$  = 841

Hypotenuse = 29

## For seventh column:

| Sinθ | 8             |
|------|---------------|
|      | <del>17</del> |
| Cosθ | 15            |
|      | <del>17</del> |
| Tanθ | 8             |
|      | 15            |

Opposite side = 8

Adjacent side= 15

By Pythagoras Theorem

Hypotenuse<sup>2</sup> = Opposite  $side^2$  + Adjacent<sup>2</sup>

$$= 8^2 + 15^2$$

Hypotenuse $^2$  = 289

Hypotenuse = 17

## For eighth column:

| 5      |
|--------|
| 4<br>5 |
| 3 4    |
|        |

Opposite side = 3

Hypotenuse = 5



By Pythagoras Theorem

Hypotenuse<sup>2</sup> = Opposite side<sup>2</sup> + Adjacent<sup>2</sup>

Adjacent<sup>2</sup> = Hypotenuse<sup>2</sup> - Opposite side<sup>2</sup>

$$= 5^2 - 3^2$$

$$= 25 - 9$$

 $Adjacent^2 = 16$ 

Adjacent side= 4

## For ninth column:

| Sinθ | $\frac{1}{3}$         |
|------|-----------------------|
| Cosθ | $\frac{2\sqrt{2}}{3}$ |
| Tanθ | $\frac{1}{2\sqrt{2}}$ |

Opposite side = 1

Adjacent side=  $2\sqrt{2}$ 

By Pythagoras Theorem

Hypotenuse<sup>2</sup> = Opposite side<sup>2</sup> + Adjacent<sup>2</sup>

$$= 1^2 + (2\sqrt{2})^2$$

Hypotenuse $^2 = 9$ 

Hypotenuse = 3

Q. 2 A. Find the values of  $-5\sin 30^{0} + 3\tan 45^{0}$ 

Answer: We know,

 $\sin 30^{\circ} = \frac{1}{2}$ 



$$\tan 45^{\circ} = 1$$

$$\Rightarrow$$
 5sin 30° + 3tan 45°

$$\Rightarrow$$
 5  $\times \frac{1}{2}$  + 3  $\times$  1

$$\Rightarrow$$
 2.5 + 3

$$\Rightarrow 5.5$$

#### Q. 2 B. Find the values of -

$$\frac{4}{5}\tan^2 60^\circ + 3\sin^2 60^\circ$$

Answer: We know,

tan 60° = 
$$\sqrt{3}$$

$$\sin 60^{\circ} = \sqrt{3/2}$$

$$\Rightarrow \frac{4}{5} \tan^2 60^\circ + 3 \sin^2 60^\circ$$

$$\Rightarrow \frac{4}{5}(\sqrt{3})^2 + 3\left(\frac{\sqrt{3}}{2}\right)^2$$

$$\Rightarrow \frac{4}{5} \times 3 + 3 \times \frac{3}{4}$$

$$\Rightarrow \frac{12}{5} + \frac{9}{4}$$

$$\Rightarrow \frac{48+45}{20}$$

$$= 93/20$$

#### Q. 2 C. Find the values of -

$$2\sin 30^{0} + \cos 0^{0} + 3\sin 90^{0}$$

**Answer:** We know,

$$\sin 30^{\circ} = 1/2$$

$$\cos 0^{\circ} = 1$$

$$\sin 90^{\circ} = 1$$

$$\Rightarrow$$
 2 sin 30° + cos 0° + 3 sin 90°

$$\Rightarrow$$
 2  $\times \frac{1}{2}$  + 1 + 1

$$\Rightarrow$$
 1 + 1 + 1

#### Q. 2 D. Find the values of -

$$\frac{\tan 60}{\sin 60 + \cos 60}$$

Answer: We know,

$$\tan 60^{\circ} = \sqrt{3}$$

$$\sin 60^{\circ} = \sqrt{3/2}$$

$$\cos 60^{\circ} = 1/2$$

$$\Rightarrow \frac{\tan 60^{\circ}}{\sin 60^{\circ} + \cos 60^{\circ}}$$

$$\Rightarrow \frac{\frac{\sqrt{3}}{\sqrt{3}}}{\frac{\sqrt{3}}{2} + \frac{1}{2}}$$

$$\Rightarrow \frac{2\sqrt{3}}{\sqrt{3}+1}$$

#### Q. 2 E. Find the values of -

$$\cos^2 45^0 + \sin^2 30^0$$

Answer: We know,

$$\cos 45^{\circ} = 1/\sqrt{2}$$

$$\sin 30^{\circ} = 1/2$$



$$\Rightarrow \left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{2}\right)^2$$

$$\Rightarrow \frac{1}{2} + \frac{1}{4}$$

$$\Rightarrow \frac{3}{4}$$

### Q. 2 F. Find the values of -

 $\cos 60^{\circ} \times \cos 30^{\circ} + \sin 60^{\circ} \times \sin 30^{\circ}$ 

Answer: We know,

$$\sin 30^{\circ} = 1/2$$

$$\sin 60^{\circ} = \sqrt{3/2}$$

$$\cos 60^{\circ} = 1/2$$

$$\cos 30^{\circ} = \sqrt{3/2}$$

$$\Rightarrow \frac{1}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{\sqrt{3}}{2}$$

$$\Rightarrow \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4}$$

$$\Rightarrow \frac{2\sqrt{3}}{4}$$

$$\Rightarrow \frac{\sqrt{3}}{2}$$

#### Q. 3. If $sin\theta = 4/5$ then find $cos\theta$ .

Answer: We know,

 $sin\theta$  = Opposite side/Hypotenuse

Given:

$$\sin\theta = 4/5$$

Opposite side = 4



Hypotenuse = 5

By Pythagoras Theorem

Hypotenuse<sup>2</sup> = Opposite side<sup>2</sup> + Adjacent<sup>2</sup>

 $Adjacent^2 = Hypotenuse^2 - Opposite side^2$ 

$$= 5^2 - 4^2$$

$$= 25 - 16$$

 $Adjacent^2 = 9$ 

Adjacent side= 3

 $cos\theta$  = Adjacent side/Hypotenuse

$$= 3/5$$

#### Q. 4.

If 
$$\cos \theta = \frac{15}{17}$$
 then find  $\sin \theta$ 

Answer: We know,

 $cos\theta$  = Adjacent side/Hypotenuse

Adjacent side = 15

Hypotenuse = 17

By Pythagoras Theorem

Hypotenuse<sup>2</sup> = Opposite  $side^2$  + Adjacent<sup>2</sup>

Opposite side<sup>2</sup> = Hypotenuse<sup>2</sup> - Adjacent<sup>2</sup>

$$= 17^2 - 15^2$$



= 64

Opposite  $side^2 = 64$ 

Opposite side = 8

 $sin\theta$  = Opposite side /Hypotenuse

= 8/17

#### **Problem set 8**

# Q. 1 A. Choose the correct alternative answer for following multiple choice questions.

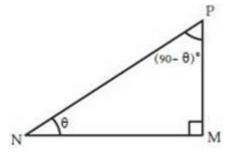
Which of the following statements is true? A.  $\sin \theta = \cos(90-\theta)$ 

B.  $\cos \theta = \tan(90-\theta)$ 

C.  $\sin \theta = \tan(90-\theta)$ 

D.  $\tan \theta = \tan(90-\theta)$ 

Answer: Let us consider the given triangle,



In this  $\triangle$  PMN,

For  $\angle \theta$ ,

Opposite side = PM

Adjacent side= PN

For  $\angle$  (90  $-\theta$ )

Opposite side = MN

Adjacent side = PM





 $sin\theta$  = Opposite side/Hypotenuse

$$cos(90-\theta) = Adjacent/Hypotenuse$$

RHS of equation (i) and (ii) are equal

$$\therefore \sin\theta = \cos(90-\theta)$$

So Option A is correct.

Q. 1 B. Choose the correct alternative answer for following multiple choice questions.

Which of the following is the value of sin 90°?

A. 
$$\frac{\sqrt{3}}{2}$$

- B. 0
- c.  $\frac{1}{2}$
- D. 1

**Answer :** We know that the value of  $\sin 90^{\circ} = 1$ 

So option D is correct.

Q. 1 C. Choose the correct alternative answer for following multiple choice questions.

 $2 \tan 45^{\circ} + \cos 45^{\circ} - \sin 45^{\circ} = ?$ 

- A. 0
- B. 1
- C. 2
- D. 3

**Answer:** We know that,



$$tan 45^{\circ} = 1$$

We also know that

$$\cos 45^{\circ} = \sin 45^{\circ}$$

So.

$$\Rightarrow$$
 2 x 1 + cos 45° - cos 45°

So the correct option is C.

# Q. 1 D. Choose the correct alternative answer for following multiple choice questions.

$$\frac{\cos 28^{\circ}}{\sin 62^{\circ}} = ?$$

- A. 2
- B. -1
- C. 0
- **D.** 1

**Answer:** We know the identity that,

$$\sin\theta = \cos(90 - \theta)$$

$$\sin 62^{\circ} = \cos (90 - 62)$$

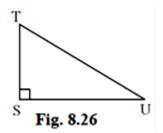
$$= \cos 28^{\circ}$$

Therefore [cos 28°/cos 28°] = 1

So option D is correct.

Q. 2. In right angled  $\Delta TSU$ , TS = 5,  $\angle S = 90^{\circ}$ , SU = 12 then find sin T, cos T, tan T. Similarly find sin U, cos U, tan U.





#### Answer:

By applying Pythagoras theorem to given triangle we have,

$$TU^2 = 5^2 + 12^2$$

$$TU^2 = 25 + 144$$

$$TU=13Now,sinT = \frac{SU}{TU} = \frac{12}{13}$$

$$\cos T = \frac{ST}{TU} = \frac{5}{13}$$

$$^{\rm tanT} = \frac{SU}{ST} = \frac{12}{5}$$

Similarly, 
$$\sin U = \frac{5}{13}$$

$$\cos U = \frac{12}{13}$$

$$\tan U = \frac{5}{12}$$

Q. 3. In right angled  $\triangle YXZ$ ,  $\angle X = 90^{\circ}$ , XZ = 8cm, YZ = 17cm, find sin Y, cos Y, tan Y, sin Z, cos Z, tan Z.



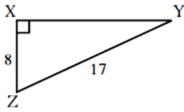


Fig. 8.27

**Answer:** For any right-angled triangle,

 $sin\theta$  = Opposite side /Hypotenuse

 $cos\theta$  = Adjacent side/Hypotenuse

 $tan\theta = sin\theta/cos\theta$ 

= Opposite side/Adjacent side

 $\cot\theta = 1/\tan\theta$ 

= Adjacent side/Opposite side

secθ = 1/cosθ

= Hypotenuse/Adjacent side

 $cosec\theta = 1/sin\theta$ 

= Hypotenuse/Opposite side

In the given triangle let us understand, the Opposite side and Adjacent sides.

So for  $\angle Y$ ,

Opposite side = XZ = 8

Adjacent side= XY

So for  $\angle Z$ ,

Opposite side = XY

Adjacent side = XZ = 8

In general for the side Opposite side to the 90° angle is the hypotenuse.





So for  $\triangle$  TSU,

By Pythagoras Theorem

$$YZ^2 = XZ^2 + XY^2$$

$$XY^2 = 17^2 - 8^2$$

$$= 225$$

$$XY = 15$$

(i) sin Y = Opposite side/Hypotenuse

$$= XZ/YZ$$

$$= 8/17$$

(ii) cos Y = Adjacent side/Hypotenuse

$$= XY/YZ$$

$$= 15/17$$

(iii)  $tan Y = sin\theta/cos\theta$ 

= Opposite side/Adjacent side

$$= XZ/XY$$

$$= 8/15$$

(i) sin Z = Opposite side/Hypotenuse

$$= XY/YZ$$

$$= 15/17$$

(ii) cos Z = Adjacent side/Hypotenuse

$$= XZ/YZ$$

$$= 8/17$$



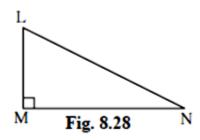
(iii)  $\tan Z = \sin\theta/\cos\theta$ 

= Opposite side/Adjacent side

= XZ/XY

= 8/15

Q. 4. In right angled  $\Delta$ LMN, if  $\angle$ N =  $\theta$ ,  $\angle$ M =  $90^{\circ}$ ,  $\cos\theta$  = 24/25 find  $\sin\theta$  and  $\tan\theta$  Similarly, find ( $\sin^2\theta$ ) and ( $\cos^2\theta$ ).



Answer: Give:

 $\cos\theta = 24/25$ 

 $cos\theta$  = Adjacent side/Hypotenuse

Adjacent side = 24

Hypotenuse = 25

By Pythagoras Theorem

Hypotenuse<sup>2</sup> = Opposite side<sup>2</sup> + Adjacent<sup>2</sup>

Opposite side<sup>2</sup> = Hypotenuse<sup>2</sup> - Adjacent<sup>2</sup>

 $= 25^2 - 24^2$ 

= 625 - 576

= 49

Opposite  $side^2 = 49$ 

Opposite side = 7

 $sin\theta$  = Opposite side/Hypotenuse



$$= 7/25$$

$$tan\theta = sin\theta/cos\theta$$

- = Opposite side/Adjacent side
- = 7/24

$$\sin^2\theta = (7/25)^2$$

= 49/625

$$\cos^2\theta = (24/25)^2$$

= 576/625

#### Q. 5. Fill in the blanks.

i. 
$$\sin 20^\circ = \cos \left[ \right]^\circ$$

ii. 
$$\tan 30^{\circ} \times \tan \bigcirc^{\circ} = 1$$

iii. 
$$\cos 40^\circ = \sin \left[ \right]^\circ$$

**Answer: i.** We know the following identity,

$$\sin\theta = \cos(90 - \theta)$$

So 
$$\sin 20^{\circ} = \cos (90 - 20)$$

$$\therefore \sin 20^\circ = \cos 70^\circ$$

ii. We know that,

Let the unknown angle be  $\theta$ 



$$\tan 30^\circ = \frac{1}{\sqrt{3}}$$

$$\tan\theta = \frac{1}{\tan(30^\circ)}$$

$$=\frac{1}{\frac{1}{\sqrt{3}}}$$

$$tanθ = \sqrt{3}$$

$$\theta = \tan^{-1}(\sqrt{3})$$

$$∴\theta = 60^{\circ}$$

iii. We know that,

$$\cos\theta = \sin(90 - \theta)$$

$$\cos 40^{\circ} = \sin (90 - 40)$$

$$\therefore \cos 40^{\circ} = \sin 50^{\circ}$$

